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Abstract – A large number of database applications like 
business data warehouses and scientific data repositories deal 
with high-dimensional data sets. As the number of 
dimensions/attributes and the overall size of data sets increase, 
it becomes prime important to efficiently retrieve specific 
queried data from the database in order to utilise the database 
effectively. Normally users are interested in querying data 
over a relatively small subset of the entire attribute set at a 
time. A potential solution is to use lower dimensional indexes 
that accurately represent the user access patterns. If the query 
pattern change, then the query response using the physical 
database design that is developed based on a static snapshot of 
the query workload may based on frequent item set 
mining ,which calculate the support and confidence  used for 
high-dimensional data sets and to dynamically adjust indexes 
as underlying query workload changes. A query pattern 
change detection mechanism is used to determine when the 
access patterns have changed which will influence the change 
in the physical database design. Another possible solution 
would be to use some dimensionality reduction techniques, 
index the reduced dimension data space, and transform the 
query in the same way that the data was transformed. 
However, the dimensionality reduction approaches are mostly 
based on data statistics and perform poorly, especially when 
the data is not highly correlated. They also introduce a 
significant overhead in the processing of queries. 
One of the   solutions is to apply feature selection to keep the 
most important attributes of the data according to some 
criteria and index the reduced dimensionality space. However, 
traditional feature selection techniques are based on selecting 
attributes that yield the best classification capabilities. 
Therefore, they also select attributes based on data statistics to 
support classification accuracy rather than focusing on the 
query performance and workload in a database domain. In 
addition, the selected features may offer little or no data 
pruning capability, given query attributes. 
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I. INTRODUCTION 
Applications such as business data warehouses and 
scientific data repositories deal with high-dimensional data 
sets. Since the number of dimensions/attributes and the 
overall size of data sets are large, it becomes essential to 
efficiently retrieve specific queried data from the database 
in order to effectively utilize the database. Indexing support 
is needed to effectively prune out significant portions of the 
data set that are not relevant for the queries. 
Multidimensional indexing, dimensionality reduction, and 
Relational Database Management System (RDBMS) index 
selection tools all could be applied to the problem. However, 
for high-dimensional data sets, each of these potential 
solutions has inherent problems. An ideal solution would 
allow us to read from the disk only those pages that contain 
matching answers to the query. We could build a 
multidimensional index over the data set so that we can 
directly answer any query by only using the index. However, 

the performance of multidimensional index structures is 
subject to Bellman’s curse of dimensionality and rapidly 
degrades as the number of dimensions increases. For the 
given example, such an index would perform much worse 
than a sequential scan. Another possibility would be to 
build an index over each single dimension. The 
effectiveness of this approach is limited to the amount of 
search space that can be pruned by a single 
dimension .Another possible solution would be to use some 
dimensionality reduction techniques, index the reduced 
dimension data space, and transform the query in the same 
way that the data was transformed. However, the 
dimensionality reduction approaches are mostly based on 
data statistics and perform poorly, especially when the data 
is not highly correlated. They also introduce a significant 
overhead in the processing of queries. Another possible 
solution is to apply feature selection to keep the most 
important attributes of the data according to some criteria 
and index the reduced dimensionality space. However, 
traditional feature selection techniques are based on 
selecting attributes that yield the best classification 
capabilities. Therefore, they also select attributes based on 
data statistics to support classification accuracy rather than 
focusing on the query performance and workload in a 
database domain. In addition, the selected features may 
offer little or no data pruning capability, given query 
attributes. 
 

II. PRELIMINARIES 
Data mining: (sometimes called data or knowledge 
discovery) is the process of analysing data from different 
perspectives and summarizing it into useful information that 
can be used to increase revenue, cuts costs, or both. Data 
mining software is one of a number of analytical tools for 
analysing data. It allows users to analyse data from many 
different dimensions or angles, categorize it, and summarize 
the relationships identified. Technically, data mining is the 
process of finding correlations or patterns among dozens of 
fields in large relational databases. Data: Data are any facts, 
numbers, or text that can be processed by a computer. 
Today, organizations are accumulating vast and growing 
amounts of data in different formats and different databases. 
This includes: Operational or transactional data such as, 
sales, cost, inventory, payroll, and accounting, Non 
operational data, such as industry sales, forecast data, and 
macro economic data ,Metadata -Data about the data itself, 
such as logical database design or data dictionary 
definitions. 
Information: The patterns, associations, or relationships 
among all this data can provide information. For example, 
analysis of retail point of sale transaction data can yield 
information on which products are selling.  
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Knowledge: Information can be converted into 
knowledge about historical patterns and future trends. For 
example, summary information on retail supermarket sales 
can be analysed in light of promotional efforts to provide 
knowledge of consumer buying behaviour. Thus, a 
manufacturer or retailer could determine which items are 
most susceptible to promotional efforts.  
Data Warehouses: Dramatic advances in data capture, 
processing power, data transmission, and storage 
capabilities are enabling organizations to integrate their 
various databases into data warehouses. Data warehousing 
is defined as a process of centralized data management and 
retrieval. Data warehousing, like data mining, is a relatively 
new term although the concept itself has been around for 
years. Data warehousing represents an ideal vision of 
maintaining a central repository of all organizational data. 
Centralization of data is needed to maximize user access 
and analysis. Dramatic technological advances are making 
this vision a reality for many companies. And, equally 
dramatic advances in data analysis software are allowing 
users to access this data freely. The data analysis software is 
what supports data mining. Knowledge Discovery in 
Databases (KDD): KDD is the process of identifying, 
valid, potentially useful and ultimately understandable 
structure in data. This process involves selecting or 
sampling data from a data warehouse, cleaning or pre-
processing it, transforming or reducing it, applying a data 
mining component to produce a structure and then 
evaluating the derived structure.   
 Architecture for Data Mining: To best apply these 
advanced techniques, they must be fully integrated with a 
data warehouse as well as flexible interactive business 
analysis tools. Many data mining tools currently operate 
outside of the warehouse, requiring extra steps for 
extracting, importing, and analysing the data. Furthermore, 
when new insights require operational implementation, 
integration with the warehouse simplifies the application of 
results from data mining. The resulting analytic data 
warehouse can be applied to improve business processes 
throughout the organization, in areas such as promotional 
campaign management, fraud detection, new product rollout, 
and so on. Figure illustrates architecture for advanced 
analysis in a large data warehouse. 
 

 
Figure 1.1  - Integrated Data Mining Architecture 

 
III. RELATED WORKS 

 High Dimensional Indexing A number of techniques 
have been introduced to address the high-dimensional 

indexing problem such as the X-tree [2] and the GC-tree [4]. 
Although these index structures have been shown to 
increase the range of effective dimensionality, they still 
suffer performance degradation at higher index 
dimensionality. 
A.  EXTENDED TREE METHOD 
The X-tree (extended node tree) is a new index structure 
supporting efficient query processing of high-dimensional 
data. The goal is to support both point data and extended 
spatial data and therefore, the X-tree uses the concept of 
overlapping regions. From the insight obtained in the 
previous section, it is clear that we have to avoid overlap in 
the directory in order to improve the indexing of high-
dimensional data. The X-tree therefore avoids overlap 
whenever it is possible without allowing the tree to 
degenerate; otherwise, the X-tree uses extended variable 
size directory nodes, so-called super nodes. In addition to 
providing a directory organization which is suitable for 
high-dimensional data, the X-tree uses the available main 
memory more efficiently (in comparison to using a 
cache)[2]. 
The X-tree may be seen as a hybrid of a linear array-like 
and a hierarchical R-tree-like directory. It is well 
established that in low dimensions the most efficient 
organization of the directory is a hierarchical organization. 
The reason is that the selectivity in the directory is very 
high which means that, e.g. for point queries, the number of 
required page accesses directly corresponds to the height of 
the tree. This is only true if there is no overlap between 
directory rectangles which is the case for a low 
dimensionality. It is also reasonable, that for very high 
dimensionality a linear organization of the directory is more 
efficient. The reason is that due to the high overlap, most of 
the directory if not the whole directory has to be searched 
anyway. If the whole directory has to be searched, a linearly 
organized directory needs less space’ and may be read much 
faster from disk than a block-wise reading of the directory. 
For medium dimensionality, an efficient organization of the 
directory would probably be partially hierarchical and 
partially linear. The problem is to dynamically organize the 
tree such that portions of the data which would produce 
high overlap are organized linearly and those which can be 
organized hierarchically without too much overlap are 
dynamically organized in a hierarchical form. The 
algorithms used in the X-tree are designed to automatically 
organize the directory as hierarchical as possible, resulting 
in a very efficient hybrid organization of the directory. 
The research challenge which has led to the design of the 
GC-tree is to combine the capability of the vector 
approximation approach that accesses only a small fraction 
of real vectors with the advantage of the multidimensional 
index structure that prunes most of the search space and 
constructs the index dynamically. In order to achieve this 
goal, we partition the data space based on the analysis of the 
dataset and construct the hierarchical index that reflects the 
space partition hierarchy.    
 
B.  GRID CELL TREE METHOD 

The GC-tree employs a density-based approach to partition 
the data space and to determine the number of bits to 
represent a cell vector for a partition. To approximate the 
density of the data points, the GC-tree partitions the data 
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space into non-overlapping hyper-square cells and find the 
points that lie inside each cell of the partition.  

This is accomplished by partitioning every dimension into 
the same number of equal length intervals at a time. This 
means that every cell generated from the partition of a space 
has the same volume, and therefore the number of points 
inside a cell can be used to approximate the density of the 
cell [4]. 

In a static database, the density of a cell can be defined as 
the fraction of data points in the cell to the total data points. 
However, for a dynamic database environment, and 
especially, in the case of constructing a database from 
scratch, it is difficult to estimate the density threshold that 
identifies the dense and sparse cells because the density is 
relatively determined with respect to the total data points. 
Therefore, in the GC-tree, we define the density of a cell to 
be the proportion of data points in the cell to disk page 
capacity when we divide a space into 2d cells by binary 
partitioning. A (sub)space in the data space corresponds to a 
node in the GC-tree and is physically mapped to a single 
disk page. There is a number P that identifies the maximum 
number of objects that can be accommodated in a disk page. 
That is, P represents the page capacity or the fanout of a 
page. When the number of objects inserted into a page 
exceeds P, the page is generally split into two. We call a 
cell c dense if the density of c is greater than or equal to a 
certain density threshold. Otherwise, it is called sparse. 
We call a dense cell a cluster and call the points that lie 
inside sparse cells outliers. If we determine the density 
threshold  to be larger than a half of the page capacity, at 
most one cluster can be generated when we partition a space 
due to the insertion of an object. 

The basic idea of the density-based partitioning is (1) to 
identify clusters and outliers when we partition a space, (2) 
to focus the partitioning on the subspaces of the clusters 
found because the subspaces covered by the outliers are 
unlikely to be pruned in the search, and (3) to deal together 
with all outliers found in the partitioning of a certain space.  

It is difficult to bind the outliers within a small region since 
they are widely spread over the whole subspace. Thus it is 
very difficult to prune the outliers collectively during the 
search because the large k-NNsphere is likely to intersect the 
large bounding region in which the outliers lie. Therefore, 
we collect in a single node of the GC-tree all outliers 
generated from a single subspace partition, and concentrate 
the partitioning on the clusters to reduce the possibility that 
clusters are intersected by the search sphere k-NNsphere. If 
the number of outliers generated from the partition exceeds 
the page capacity, the GC-tree allocates more pages for the 
outliers and simply links them. It makes multiple pages a 
single virtual page. This is based on the observation that the 
volume covered by the outliers is so large that it may not be 
pruned in the search. 

It is well known that for low-dimensional indexes it is 
beneficial to partition the data space as balanced as 
possible. However, in high-dimensional spaces, the 
balanced partitioning results in  large bounding rectangles 
for the partitions. When we apply balanced partitioning on a 
uniformly distributed dataset, the data space cannot be split 
in each dimension. For example, in a 256-dimensoinal data 

space, a split in each dimension results in a 2256 partitions 
(or disk pages). Therefore, the data space is usually split 
once in a number d of dimensions. In the remaining (d - d) 
dimensions it has not been split and the bounding rectangles 
include almost the whole data space in these dimensions. 
Even for the non-uniformly distributed (e.g., clustered) 
dataset, the bounding rectangles are likely to be large 
because they still try to accommodate outliers and the 
outliers usually lie far apart. On the contrary, the GC-tree 
excludes the outliers in forming the bounding regions to 
reduce the size of the bounding regions. 
 

C. INDEX SELECTION IN RELATIONAL- 
DATABASES 
A problem of considerable interest in the physical design of 
databases is the selection of a good set of indices. Indices 
can be considered as auxiliary files that allow to retrieve 
tuples satisfying certain selection predicates without having 
to examine the whole relation. On the other hand, updating 
the database causes an index to be updated to remain 
consistent with the new database state. So, an index speeds 
up retrieval and slows down maintenance. In general two 
types of indices can be distinguished: primary and 
secondary indices. In the case of a primary index, the tuples 
in the relation are ordered on the indexed attribute. This is 
not the case for a secondary index [4]. 
 PRIMARY AND SECONDARY INDICES 
This section is devoted to the relation between a primary 
index and secondary indices. Indices are supposed to be 
organized often as B+-trees. Each node in the tree coincides 
with a page. The leaf level consists of {key, TID-list} pairs 
for every unique value of the indexed attribute(s). Figure 
2.2(a) represents a primary index on the column name of a 
relation RP name, age, residence, blood group) and figure 
2.2(b) a secondary index on the column blood group of R. 
In general the processing of a query roughly consists of two 
steps; first the number of tuples which satisfies possibly the 
WHERE clause of a query is determined; then these tuples 
are retrieved . Since a primary index may be considered as a 
special kind of a secondary index the optimizer may treat a 
primary index and secondary indices as same in processing 
the first step. In the second step it may use the ordening 
property of the primary index if at least both types of 
indices may be used. The following example illustrates this. 

 
Fig 2.2 (a) Represents a primary index on attribute name of 

relation R. 
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Fig 2.2 (b) Represents a secondary index on attribute blood 

group of R. 
 
 AUTOMATIC INDEX SELECTION 
The ideas of having a database that can tune itself by 
automatically creating new indexes as the queries arrive 
have been proposed in[6].In[6] a cost model is used to 
identify beneficial indexes and decide when to create or 
drop an index at runtime. Costa and Lifschitz propose an 
agent-based database architecture to deal with an automatic 
index creation. Microsoft Research has proposed a physical-
design alerter to identify when a modification to the 
physical design could result in improved performance. 
 ASSOCIATION RULE MINING 
A main idea of association mining technique is to search a 
relationship of attributes and tuples, by discovering 
frequently occurring item sets in database. A result is 
patterns described as rules that represent one-way 
relationship. Furthermore, result rules consist of a 
confidential value and support value, a value of which is 
used to identify the pattern. The support is a number of 
instances that complies with the rules, whereas the 
confidential is a percentage of instances that must likewise 
be complied by rules. In basket analysis, for example, the 
association mining is a customer’s behaviour analysis that 
determines the products the customer frequently buy 
together. 
Association rule mining, one of the most important and well 
researched techniques of data mining, was first introduced 
in [1]. It aims to extract interesting correlations, frequent 
patterns, associations or casual structures among sets of 
items in the transaction databases or other data repositories. 
Association rules are widely used in various areas such as 
telecommunication networks, market and risk management, 
inventory control etc. 
Association rule mining is to find out association rules that 
satisfy the predefined minimum support and confidence 
from a given database. The problem is usually decomposed 
into two sub problems. One is to find those item sets whose 
occurrences exceed a predefined threshold in the database; 
those item sets are called frequent or large item sets. The 
second problem is to generate association rules from those 
large item sets with the constraints of minimal confidence. 
In many cases, the algorithms generate an extremely large 
number of association rules, often in thousands or even 
millions. Further, the association rules are sometimes very 
large. It is nearly impossible for the end users to 
comprehend or validate such large number of complex 
association rules, thereby limiting the usefulness of the data 
mining results. Several strategies have been proposed to 

reduce the number of association rules, such as generating 
only “interesting” rules, generating only “non redundant” 
rules, or generating only those rules satisfying certain other 
criteria such as coverage, leverage, lift or strength [1]. 
In general, a set of items (such as the antecedent or the 
consequent of a rule) is called an item set. The number of 
items in an item set is called the length of an item set. Item 
sets of some length k are referred to as k-item sets. 
Generally, an association rules mining algorithm contains 
the following steps:• The set of candidate k-item sets is 
generated by 1-extensions of the large (k -1)-item sets 
generated in the previous iteration. Supports for the 
candidate k-item sets are generated by a pass over the 
database.• Item sets that do not have the minimum support 
are discarded and the remaining item sets are called large k-
item sets. This process is repeated until no more   large item 
sets are found. 
 

IV. PROPOSED SYSTEM 
Instead of using the query optimizer to estimate the query 
cost, we conservatively estimate the number of matches 
associated with using a given index by using a 
multidimensional histogram abstract representation of the 
data set. The histogram captures data correlations between 
only those attributes that could be represented in a selected 
index. The cost associated with an index is calculated based 
on the number of estimated matches derived from the 
histogram and the dimensionality of the index. Increasing 
the size of the multidimensional histogram enhances the 
accuracy of the estimate at the cost of an abstract 
representation size. 
 While maintaining the original query information for later 
use to determine the estimated query cost, we apply one 
abstraction to the query workload to convert each query into 
the set of attributes referenced in the query. We perform 
frequent item set mining over this abstraction and only 
consider those sets of attributes that meet a certain support 
to be potential indexes. By varying the support, we affect 
the speed of index selection and the ratio of queries that are 
covered by potential indexes. We further prune the analysis 
space using association rule mining by eliminating those 
subsets above a certain confidence threshold. Lowering the 
confidence threshold improves the analysis time by 
eliminating some lower dimensional indexes from 
consideration but can result in recommending indexes that 
cover a strict superset of the queried attributes. 
Our technique differs from existing tools in the method that 
we use to determine the potential set of indexes to evaluate 
and in the quantization-based technique that we use to 
estimate query costs. All of the commercial index wizards 
work in design time. The DBA has to decide when to run 
this wizard and over which workload. The assumption is 
that the workload is going to remain static over time, and in 
case it changes, the DBA would collect the new workload 
and run the wizard again. The flexibility afforded by the 
abstract representation that we use allows it to be used for 
infrequent index selection considering a broader analysis 
space or frequent online index selection. 
USER MODULE 
 Clients are end users of the systems. The user interface 
resides in these client systems. This user interface enables 
the clients to submit their item search. The user interface 
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also enables the users to Purchase the items from the seller. 
A client is allowed to login from the client system. Only 
authenticated clients are allowed to login. Password and 
username is used to authenticate the client (user). 
ALGORITHM 
1. Start the system.2. Open the UI to the system.3.  If  new  
user then submit request for creating a new user account. 
4. If registered user, then provide login ID, password and 
select category as user to log in. If    error displays the error 
message and go back to login prompt.5. Display list of 
items provided by the company.6. Accept the no of items 
requested 
7. Create bill with tax 8. If purchase is completed by the 
user then provide options for    a. To go back  and purchase 
the items.      b. To go back the main page. 9. End 
 INDEX SELECTION MODULE 
We identify three major components in the index selection 
framework:  
 The initialization of the abstract 
representations. 
 The query cost computation, and  
 The index selection loop.  
In the following sections, we describe these components 
and the data flow between them. 
 

 
Fig 5.3  Index Selection Flow chart and its components. 

 
 INITIALIZE THE ABSTRACT   RESENTATION 

  In this module we are monitoring the user queries and 
initialize the abstract representation. In this module we 
collection the user transaction and from that we are finding 
the frequently selected item. And by applying the association 
rule we are calculation the relationship between the records 
and finding the support and confidence. Based  on that we 
are initializing the abstract representation. The initialization 
step uses a query workload and the data set to produce a set 
of Potential Indexes P, a Query Set Q, and a 
Multidimensional Histogram H according to the support, 
confidence, and histogram size specified by the user. The 
description of the outputs and how they are generated are 
given as follows:  
Potential index set p: This is a collection of attribute 
sets that could be beneficial as an index for the queries in 
the input query workload. This set is computed using 
traditional data mining techniques. Considering the 
attributes involved in each query for the input query 
workload to be a single transaction, P consists of the sets of 
attributes that occur together in a query at a ratio greater 
than the input support. Formally, the support of a set of 
attributes A is defined as  

                                                       

 
Where Qi is the set of attributes in the ith query, and n is the 
number of queries.  
For instance, if the input support is 10 percent and attributes 
1 and 2 are queried together in greater than 10 percent of 
the queries, then a representation of the set of attributes {1, 
2} will be included as a potential index. Note that because a 
subset of an attribute set that meets the support requirement 
will also necessarily meet the support, all subsets of 
attribute sets meeting the support will also be included as 
potential indexes (in the example above, both sets {1} and 
{2} will be included). As the input support is decreased, the 
number of potential indexes increases. Note that our 
particular system is built independently of a query optimizer, 
but the sets of attributes appearing in the predicates from a 
query optimizer log could just as easily be substituted for 
the query workload in this step. If a set occurs nearly as 
often as one of its subsets, an index built over the subset 
will likely not provide much benefit over the query 
workload if an index is built over the attributes in the set. 
Such an index will only be more effective in pruning data 
space for those queries that involve only the subset’s 
attributes. In order to enhance analysis speed with limited 
effect on accuracy, the input confidence is used to prune the 
analysis space. Confidence is the ratio of a set’s occurrence 
to the occurrence of a subset. 
 While data mining the frequent attribute sets in the query 
workload in determining P, we also maintain the association 
rules for disjoint subsets and compute the confidence of 
these association rules. The confidence of an association 
rule is defined as the ratio that the antecedent (left-hand side 
of the rule) and consequent (right-hand side of the rule) 
appear together in a query, given that the antecedent 
appears in the query. Formally, the confidence of an 
association rule {set of attributes A} - {set of attributes 
B}, where A and B are disjoint, is defined as  
                            

 
In our example, if every time attribute 1 appears, attribute 2 
also appears, then the confidence of {1}{2}= 1.0. If 
attribute 2 appears without attribute 1 as many times as it 
appears with attribute 1, then the confidence {2}{1}= 0.5. 
If we have set the confidence input to 0.6, then we will 
prune the attribute set {1} from P, but we will keep attribute 
set {2}.  
We can also set the confidence level based on the attribute 
set cardinality. Since the cost of including extra attributes 
that are not useful for pruning increases with increased 
indexed dimensionality, we want to be more conservative 
with respect to pruning attribute subsets. The confidence 
could take on a value that is dependent on the set cardinality. 
Although the A priori algorithm was appropriate for the 
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relatively low attribute query sets in our domain, a more 
efficient algorithm such as the FP-Tree could be applied if 
the attribute sets associated with queries are too large for 
the A priori technique to be efficient. Although it is 
desirable to avoid examining a high-dimensional index set 
as a potential index, another possible solution in the case 
where a large number of attributes are frequent together 
would be to partition a large closed frequent item set into 
disjoint subsets for further examination. Techniques such as 
CLOSET could be used to arrive at the initial closed 
frequent item sets.  
Query set Q: This is the abstract representation of the 
query workload. It is initialized by associating the potential 
indexes that could be beneficial for each query with that 
query. These are the indexes in the potential index set P that 
share at least one common attribute with the query. At the 
end of this step, each query has an identified set of possible 
indexes for that query.  
MULTIDIMENSIONAL HISTOGRAM H: An 
abstract representation of the data set is created in order to 
estimate the query cost associated with using each query’s 
possible indexes to answer that query. This representation is 
in the form of a multidimensional histogram H. A single 
bucket represents a unique bit representation across all the 
attributes represented in the histogram. The input histogram 
size dictates the number of bits used to represent each 
unique bucket in the histogram. These bits are designated to 
represent only the single attributes that met the input 
support in the input query workload. If a single attribute 
does not meet the support, then it cannot be part of an 
attribute set appearing in P. There is no reason to sacrifice 
data representation resolution for attributes that will not be 
evaluated. The number of bits that each of the represented 
attributes gets is proportional to the log of that attribute’s 
support. This gives more resolution to those attributes that 
occur more frequently in the query workload.  
Data for an attribute that has been assigned b bits is divided 
into 2b buckets. In order to handle data sets with uneven 
data distribution, we define the ranges of each bucket so 
that each bucket contains roughly the same number of 
points. The histogram is built by converting each record in 
the data etc to its representation in bucket numbers. As we 
process data rows, we only aggregate the count of rows with 
each unique bucket representation, because we are just 
interested in estimating the query cost. Note that the 
multidimensional histogram is based on a scalar quantize 
designed on data and access patterns, as opposed to just data 
in the traditional case. A higher accuracy in representation 
is achieved by using more bits to quantize the attributes that 
are more frequently queried. 

  
Table 5.1 Histogram Example 

For illustration, Table 5.1 shows a simple multidimensional 
histogram example. This histogram covers three attributes 
and uses 1 bit to quantize attributes 2 and 3, and 2 bits to 
quantize attribute 1, assuming that it is queried more 
frequently than the other attributes. In this example, for 
attributes 2 and 3, values from 1 to 5 quantize to 0, and 
values from 6 to 10 quantize to 1. For attribute 1, values 1 
and 2 quantize to 00, 3 and 4 quantize to 01, 5, 6, and 
7quantize to 10, and 8 and 9 quantize to 11. The .’s in the 
column “Value” denote attribute boundaries (that is, 
attribute 1 has 2 bits assigned to it).  
Note that we do not maintain any entries in the histogram 
for bit representations that have no occurrences. Thus, we 
cannot have more histogram entries than records and will 
not suffer from exponentially increasing the number of 
potential multidimensional histogram buckets for high-
dimensional histograms.  
 
 CALCULATE THE QUERY COST 
         The query cost will be calculated based on the 
potential index and Query Set. The query will be used to 
find the best index. We say the index is best one if it gives 
result for all the queries. Once generated, the abstract 
representations of the query set Q and the multidimensional 
histogram H are used to estimate the cost of answering each 
query by using all possible indexes for the query. For a 
given query-index pair, we aggregate the number of 
matches that we find in the multidimensional histogram by 
looking only at the attributes in the query that also occur in 
the index (bits associated with other attributes are 
considered to be don’t cares in the query matching logic). 
To estimate the query cost, we then apply a cost function 
based on the number of matches that we obtain by using the 
index and the dimensionality of the index. At the end of this 
step, our abstract query set representation has estimated 
costs for each index that could improve the query cost. For 
each query in the query set representation, we also keep a 
current cost field, which we initialize to the cost of 
performing the query by using sequential scan. At this point, 
we also initialize an empty set of suggested indexes S.  
Cost function: This is used to estimate the cost associated 
with using a certain index for a query. The cost function can 
be varied to accurately reflect a cost model for the database 
system. For example, one could apply a cost function that 
amortized the cost of loading an index over a certain 
number of queries or use a function tailored to the type of 
index that is used. Many cost functions have been proposed 
over the years.  R-Tree, which is the index type used for this 
work.  
Although these published cost estimates can be effective to 
estimate the number of page accesses associated with using 
a multidimensional index structure under certain conditions, 
they have certain characteristics that make them less than 
ideal for the given situation. Each of the cost estimates 
formulas require a range radius. Therefore, the formulas 
break down when assessing the cost of a query that is an 
exact match query in one or more of the query dimensions. 
These cost estimates also assume that data distribution is 
independent between attributes and that the data is 
uniformly distributed throughout the data space. 
In order to overcome these limitations, we apply a cost 
estimate that is based on the actual matches that occur over 
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the multidimensional histogram over the attributes that form 
a potential index. The cost model for R-trees that we use in 
this work is given by  

                              
Where d is the dimensionality of the index, and m is the 
number of matches returned for query matching attributes in 
the multidimensional histogram. Using actual matches 
eliminates the need for a range radius. It also ties the cost 
estimate to the actual data characteristics (that is, 
incorporates both data correlation between attributes and 
data distribution, whereas the published models will 
produce results that are dependent only on the range radius 
for a given index structure). The cost estimate provided is 
conservative in that it will provide a result that is at least as 
great as the actual number of matches in the database. By 
evaluating the number of matches over the set of attributes 
that match the query, the multidimensional subspace 
pruning that can be achieved using different index 
possibilities is taken into account. There is an additional 
cost associated with higher dimensionality indexes due to 
the greater number of overlaps of the hyperspaces within 
the index structure and additional cost f traversing the 
higher dimensional structure. A penalty is imposed on a 
potential index by the dimensionality term. Given equal 
ability to prune the space, a lower dimensional index will 
translate into a lower cost. The cost function could be more 
complicated in order to more accurately model query costs. 
It could model query cost with greater accuracy, for 
example, by crediting complete attribute coverage for 
coverage queries. It could also reflect the appropriate index 
structures used in the database system such as B+-trees. We 
used this particular cost model, because the index type was 
appropriate for our data and query sets. 
 
 INDEX SELECTION LOOP 
After initializing the index selection data structures and 
updating estimated query costs for each potentially useful 
index for a query, we use a greedy algorithm that takes into 
account the indexes that were already selected to iteratively 
select indexes that would be appropriate for the given query 
workload and data set. For each index in the potential index 
set P, we traverse the queries in query set Q that could be 
improved by that index and accumulate the improvement 
associated with using that index for that query. The 
improvement for a given query-index pair is the difference 
between the cost for using the index and the query’s current 
cost. If the index does not provide any positive benefit for 
the query, no improvement is accumulated. The potential 
index i that yields the highest improvement over the query 
set Q is considered to be the best index. Index i is removed 
from the potential index set P and is added to the suggested 
index set S. For the queries that benefit from i, the current 
query cost is replaced by the improved cost. 
 After each i is selected, a check is made to determine if the 
index selection loop should continue. The input indexing 
constraints provides one of the loop stop criteria. The 
indexing constraint could be any constraint such as the 
number of indexes, total index size, or the total number of 
dimensions indexed. If no potential index yields further 
improvement or the indexing constraints have been met, 

then the loop exits. The set of suggested indexes S contains 
the results of the index selection algorithm. 
 At the end of loop iteration, when possible, we prune the 
complexity of the abstract representations in order to make 
the analysis more efficient. This includes actions such as 
eliminating potential indexes that do not provide better cost 
estimates than the current cost for any query and pruning 
from consideration those queries whose best index is 
already a member of the set of suggested indexes. The 
overall speed of this algorithm is coupled with the number 
of potential indexes analyzed, so the analysis time can be 
reduced by increasing the support or decreasing the 
confidence.  
Different strategies can be used in selecting the best index. 
The strategy provided assumes an indexing constraint based 
on the number of indexes and therefore uses the total 
benefit derived from the index as the measure of index 
“goodness.” If the indexing constraint is based on the total 
index size, then the benefit per index size unit may be a 
more appropriate measure. However, this may result in 
recommending a lower dimensional index and, later in the 
algorithm, a higher dimensional index that always performs 
better. The recommendation set can be pruned in order to 
avoid recommending an index that is non useful in the 
context of the complete solution.  
 
 CALCULATE THE PERFORMANCE 
For each response of the query we are calculating the 
Performance. Based on that performance the index 
modification will be performed. 
 
ADMIN MODULE 
Administrator is a part of the organization, so he should be 
allowed to see the sales of the items and administrator can 
also be a database administrator so he can see the details 
like support and confidence for different combinations of 
items that the end users of the system have purchased, 
which reflects the frequent pattern for our index 
calculations. The user interface provided is same as an end 
user but while logging in he has to specify as ‘Admin’ in 
category field of the Login panel. This user interface 
enables the Admin to submit their item search. Only 
authenticated users are allowed to login. Password and 
username is used to authenticate the user (Admin). 
Algorithm: 
1. Start the system 
2. Open the UI to the system 
3. If new user then submit request for creating a new user 
account. 
4. If registered user, then provide login ID, password and 
select category as Admin to log in. If    error display the 
error message and go back to login prompt. 
5. Display list of items provided by the company and its 
sales. 
6. Display list of different combinations of items with their 
support and confidence which shows the frequent items 
sales. 
7. Display Indexes for Data retrieval. 
8. If all pages are over then provide options for 
     a. To go back and see details again. 
     b. To go back to main page. 
9. End. 
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V. IMPLEMENTATION 
The J2EE platform is used for implementation. It uses a 
multi-tiered distributed application model. Application 
logic is divided into components according to function, 
and the various application components that make up a 
J2EE application are installed on different machines 
depending on the tier in the multi-tiered J2EE 
environment to which the application component belongs. 
Figure 6.1 shows two multi-tiered J2EE applications 
divided into the tiers described in the following list. The 
J2EE application parts shown in Figure 6.1 are presented 
in J2EE Components.  
 

 

Figure 6.1 Multi-tiered Applications 

 Client-tier components run on the client machine.  
 Web-tier components run on the J2EE server.  
 Business-tier components run on the J2EE server.  

Enterprise information system (EIS)-tier software runs 
on the EIS server.  Although a J2EE application can 
consist of the three or four tiers shown in Figure 6.1, 
J2EE multi-tiered applications are generally considered 
to be three-tiered applications because they are 
distributed over three different locations: client machines, 
the J2EE server machine, and the database or legacy 
machines at the back end. Three-tiered applications that 
run in this way extend the standard two-tiered client and 
server model by placing a multithreaded application 
server between the client application and back-end 
storage.  

J2EE COMPONENTS 

J2EE applications are made up of components. A J2EE 
component is a self-contained functional software unit 
that is assembled into a J2EE application with its related 
classes and files and that communicates with other 
components. The J2EE specification defines the 
following J2EE components: Application clients and 
applets are components that run on the client. Java 

Servlet and Java Server Pages  (JSP ) technology 
components are Web   components that run on the server. 

Enterprise JavaBeans  (EJB ) components (enterprise 
beans) are business components that run on the server.J2EE 

components are written in the Java programming language 
and are compiled in the same way as any program in the 
language. 

The difference between J2EE components and "standard" 
Java classes is that J2EE components are assembled into 
a J2EE application, verified to be well formed and in 
compliance with the J2EE specification, and deployed to 
production, where they are run and managed by the J2EE 
server.  

BUSINESS COMPONENTS  

Business code, which is logic that solves or meets the 
needs of a particular business domain such as banking, 
retail, or finance, is handled by enterprise beans running 
in the business tier. Figure 6.3 shows how an enterprise 
bean receives data from client programs, processes it (if 
necessary), and sends it to the enterprise information 
system tier for storage. An enterprise bean also retrieves 
data from storage, processes it (if necessary), and sends it 
back to the client program.  

 

Figure 6.3 Business and EIS Tiers 

There are three kinds of enterprise beans: session beans, 
entity beans, and message-driven beans. A session bean 
represents a transient conversation with a client. When 
the client finishes executing, the session bean and its data 
are gone. In contrast, an entity bean represents persistent 
data stored in one row of a database table. If the client 
terminates or if the server shuts down, the underlying 
services ensure that the entity bean data is saved. A 
message-driven bean combines features of a session bean 
and a Java Message Service ("JMS") message listener, 
allowing a business component to receive JMS messages 
asynchronously. This tutorial describes entity beans and 
session beans. 

 MAJOR ACTIVITIES BY ALL MODULES 

Following are the major activities implemented 
in the all modules of the project implemented. 

 MAJOR USER PROGRAM ACTIVITIES are Initialize  
components , Validate user ,Encode instruction 
commands , Encode data , Transmit instruction command 
and data , Create new user ,Change password , Display 
items options panel  , Calculate bill ,Allow the user to 
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purchase , Acknowledge and exit. There are several sub 
activities in each of the above activities, for example 
validate user does the following activities. Display login 
panel, Verify client side validation, Verify user name 
field and password file for not empty , Send user name to 
the server, Get password from the server , Decode the 
password , Verify the password is correct or not. Major 
Admin Program Activities :  It remains same 
technically that is the user interface provided is same as 
an end user but while logging in he has to specify as 
‘Admin’ in category field of the Login panel. This user 
interface enables the Admin to submit their item search. 
Only authenticated users are allowed to login. Password 
and username is used to authenticate the user (Admin).It 
displays the item wise sales details, frequent item sets, 
support and confidence for different combinations of 
items (Index). 
Major Index selection Program Activities: After 
every 5 transactions create index , Before creating index 
find frequent item set, Calculate support and confidence 
for different combination of items, When a new query 
arrives try to find index with less query cost , Display 
that as the answer for the search,  Otherwise display 
nothing. 

VI. SCREEN SHOTS 
 

 

Screen Shot 1 showing the Starting Screen the System with  
Login Panel  and Search box. 

Screen shot 2 showing the new member Login Registration 
forms for User and Admin. 

 
Screen shot 3 showing the ‘With Index’ method of Index 
recommendations. 

Screen shot 4 showing the ‘With Index’ method of 
recommendations when there is no recommended index. 
 

 
Screen shot 5 showing the without index method.  
 

Screen shot 6 showing the Admin Login panel. 
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Screen shot 7 showing the List of items for Purchase and 
command to purchase. 
 

 
Screen shot 8 showing the List of items Purchased and total 
Bill. 

 
Screen shot 9 Acknowledging the User Purchase. 

 
The description of the   various forms (snap shots)of the 
project implemented is as follows: Screen Shot 1 shows 
Main menu of the system with Login Panel and Search box. 
Screen shot 2 shows the new member Login Registration 
forms for User and Admin. Screen shot 3 shows the ‘With 
Index’ method of Index recommendations. Screen shot 4 
shows the ‘With Index’ method of recommendations when 
there is no recommended index. Screen shot 5 shows the 
without index method. Screen shot 6 shows the Admin 
Login panel. Screen shot 7 shows the List of items for 
Purchase and command to purchase. Screen shot 8 shows 
the List of items Purchased and total Bill. Screen shot 9 
shows form   acknowledging the User Purchase. 
 

VII. RESULTS AND DISCUSSIONS 
We have used J2EE to implement Effective Indexing 
method for High dimensional Databases .The Index 
recommendations are done by using frequent item set 
mining. Test results show that whenever a query pattern 
change, this intern changes the frequent item set then the 
support and confidence values and change in item set 
change the recommended indexes and this makes the 
system more attractive. However extra bit of time is needed 
to these activities such as calculating frequent item set, 
confidence, support and query cost. Therefore the index 
recommendations based on frequent item set mining is 
appropriate for the product purchasing sites.  If want to get 
a particular item in the system then better to choose the 
without index method available for search .In our model we 
have used a new data mining technique which is visible to 
users. The foundation provided here will be used to explore 
this trade-off and to develop an improved utility for real-
world applications. The proposed technique affords the 
opportunity to adjust indexes to new query patterns. A 
limitation of the proposed approach is that if index set 
changes are not responsive enough to query pattern changes, 
then the control feedback may not affect positive system 
changes. 
 
VIII. CONCLUSION AND SCOPE FOR FUTURE 

WORK 
A flexible technique for index selection is introduced, 
which can be tuned to achieve different levels of constraints 
and analysis complexity. A low-constraint more complex 
analysis can lead to more accurate index selection over 
stable query patterns. A more constrained less complex 
analysis is more appropriate to adapt index selection to 
account for evolving query patterns. The technique uses a 
generated multidimensional histogram to estimate cost and, 
as a result, is not coupled to the idiosyncrasies of a query 
optimizer, which may not be able to take advantage of 
knowledge about correlations between attributes. Indexes 
are recommended in order to take advantage of 
multidimensional subspace pruning when it is beneficial to 
do so.  
The proposed technique affords the opportunity to adjust 
indexes to new query patterns. A limitation of the proposed 
approach is that if index set changes are not responsive 
enough to query pattern changes, then the control feedback 
may not affect positive system changes. However, this can 
be addressed by adjusting control sensitivity or by changing 
control sensitivity over time as more knowledge is gathered 
about the query patterns.  
Index creation is quite time consuming. It is not feasible to 
perform real-time analysis of incoming queries and generate 
new indexes when the patterns change. Potential indexes 
could be generated prior to receiving new queries and, when 
indicated by the analysis, moved to the active status. This 
could mean moving an index from the local storage to the 
main memory or from a remote storage to the local storage, 
depending on the size of the index.  
Future Enhancement: 
  Future work is to reduce the no of computation while 
computing the index. 
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