

An Effective Indexing Method for High
Dimensional Databases

Manjunath K.G. , Kallinatha H.D.
S.I.T.Tumkur, India,

Abstract – A large number of database applications like
business data warehouses and scientific data repositories deal
with high-dimensional data sets. As the number of
dimensions/attributes and the overall size of data sets increase,
it becomes prime important to efficiently retrieve specific
queried data from the database in order to utilise the database
effectively. Normally users are interested in querying data
over a relatively small subset of the entire attribute set at a
time. A potential solution is to use lower dimensional indexes
that accurately represent the user access patterns. If the query
pattern change, then the query response using the physical
database design that is developed based on a static snapshot of
the query workload may based on frequent item set
mining ,which calculate the support and confidence used for
high-dimensional data sets and to dynamically adjust indexes
as underlying query workload changes. A query pattern
change detection mechanism is used to determine when the
access patterns have changed which will influence the change
in the physical database design. Another possible solution
would be to use some dimensionality reduction techniques,
index the reduced dimension data space, and transform the
query in the same way that the data was transformed.
However, the dimensionality reduction approaches are mostly
based on data statistics and perform poorly, especially when
the data is not highly correlated. They also introduce a
significant overhead in the processing of queries.
One of the solutions is to apply feature selection to keep the
most important attributes of the data according to some
criteria and index the reduced dimensionality space. However,
traditional feature selection techniques are based on selecting
attributes that yield the best classification capabilities.
Therefore, they also select attributes based on data statistics to
support classification accuracy rather than focusing on the
query performance and workload in a database domain. In
addition, the selected features may offer little or no data
pruning capability, given query attributes.
Keywords— Indexing, KDD, OLAP, RAID, X-tree, GC-tree

I. INTRODUCTION
Applications such as business data warehouses and
scientific data repositories deal with high-dimensional data
sets. Since the number of dimensions/attributes and the
overall size of data sets are large, it becomes essential to
efficiently retrieve specific queried data from the database
in order to effectively utilize the database. Indexing support
is needed to effectively prune out significant portions of the
data set that are not relevant for the queries.
Multidimensional indexing, dimensionality reduction, and
Relational Database Management System (RDBMS) index
selection tools all could be applied to the problem. However,
for high-dimensional data sets, each of these potential
solutions has inherent problems. An ideal solution would
allow us to read from the disk only those pages that contain
matching answers to the query. We could build a
multidimensional index over the data set so that we can
directly answer any query by only using the index. However,

the performance of multidimensional index structures is
subject to Bellman’s curse of dimensionality and rapidly
degrades as the number of dimensions increases. For the
given example, such an index would perform much worse
than a sequential scan. Another possibility would be to
build an index over each single dimension. The
effectiveness of this approach is limited to the amount of
search space that can be pruned by a single
dimension .Another possible solution would be to use some
dimensionality reduction techniques, index the reduced
dimension data space, and transform the query in the same
way that the data was transformed. However, the
dimensionality reduction approaches are mostly based on
data statistics and perform poorly, especially when the data
is not highly correlated. They also introduce a significant
overhead in the processing of queries. Another possible
solution is to apply feature selection to keep the most
important attributes of the data according to some criteria
and index the reduced dimensionality space. However,
traditional feature selection techniques are based on
selecting attributes that yield the best classification
capabilities. Therefore, they also select attributes based on
data statistics to support classification accuracy rather than
focusing on the query performance and workload in a
database domain. In addition, the selected features may
offer little or no data pruning capability, given query
attributes.

II. PRELIMINARIES
Data mining: (sometimes called data or knowledge
discovery) is the process of analysing data from different
perspectives and summarizing it into useful information that
can be used to increase revenue, cuts costs, or both. Data
mining software is one of a number of analytical tools for
analysing data. It allows users to analyse data from many
different dimensions or angles, categorize it, and summarize
the relationships identified. Technically, data mining is the
process of finding correlations or patterns among dozens of
fields in large relational databases. Data: Data are any facts,
numbers, or text that can be processed by a computer.
Today, organizations are accumulating vast and growing
amounts of data in different formats and different databases.
This includes: Operational or transactional data such as,
sales, cost, inventory, payroll, and accounting, Non
operational data, such as industry sales, forecast data, and
macro economic data ,Metadata -Data about the data itself,
such as logical database design or data dictionary
definitions.
Information: The patterns, associations, or relationships
among all this data can provide information. For example,
analysis of retail point of sale transaction data can yield
information on which products are selling.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2008

Knowledge: Information can be converted into
knowledge about historical patterns and future trends. For
example, summary information on retail supermarket sales
can be analysed in light of promotional efforts to provide
knowledge of consumer buying behaviour. Thus, a
manufacturer or retailer could determine which items are
most susceptible to promotional efforts.
Data Warehouses: Dramatic advances in data capture,
processing power, data transmission, and storage
capabilities are enabling organizations to integrate their
various databases into data warehouses. Data warehousing
is defined as a process of centralized data management and
retrieval. Data warehousing, like data mining, is a relatively
new term although the concept itself has been around for
years. Data warehousing represents an ideal vision of
maintaining a central repository of all organizational data.
Centralization of data is needed to maximize user access
and analysis. Dramatic technological advances are making
this vision a reality for many companies. And, equally
dramatic advances in data analysis software are allowing
users to access this data freely. The data analysis software is
what supports data mining. Knowledge Discovery in
Databases (KDD): KDD is the process of identifying,
valid, potentially useful and ultimately understandable
structure in data. This process involves selecting or
sampling data from a data warehouse, cleaning or pre-
processing it, transforming or reducing it, applying a data
mining component to produce a structure and then
evaluating the derived structure.
 Architecture for Data Mining: To best apply these
advanced techniques, they must be fully integrated with a
data warehouse as well as flexible interactive business
analysis tools. Many data mining tools currently operate
outside of the warehouse, requiring extra steps for
extracting, importing, and analysing the data. Furthermore,
when new insights require operational implementation,
integration with the warehouse simplifies the application of
results from data mining. The resulting analytic data
warehouse can be applied to improve business processes
throughout the organization, in areas such as promotional
campaign management, fraud detection, new product rollout,
and so on. Figure illustrates architecture for advanced
analysis in a large data warehouse.

Figure 1.1 - Integrated Data Mining Architecture

III. RELATED WORKS

 High Dimensional Indexing A number of techniques
have been introduced to address the high-dimensional

indexing problem such as the X-tree [2] and the GC-tree [4].
Although these index structures have been shown to
increase the range of effective dimensionality, they still
suffer performance degradation at higher index
dimensionality.
A. EXTENDED TREE METHOD
The X-tree (extended node tree) is a new index structure
supporting efficient query processing of high-dimensional
data. The goal is to support both point data and extended
spatial data and therefore, the X-tree uses the concept of
overlapping regions. From the insight obtained in the
previous section, it is clear that we have to avoid overlap in
the directory in order to improve the indexing of high-
dimensional data. The X-tree therefore avoids overlap
whenever it is possible without allowing the tree to
degenerate; otherwise, the X-tree uses extended variable
size directory nodes, so-called super nodes. In addition to
providing a directory organization which is suitable for
high-dimensional data, the X-tree uses the available main
memory more efficiently (in comparison to using a
cache)[2].
The X-tree may be seen as a hybrid of a linear array-like
and a hierarchical R-tree-like directory. It is well
established that in low dimensions the most efficient
organization of the directory is a hierarchical organization.
The reason is that the selectivity in the directory is very
high which means that, e.g. for point queries, the number of
required page accesses directly corresponds to the height of
the tree. This is only true if there is no overlap between
directory rectangles which is the case for a low
dimensionality. It is also reasonable, that for very high
dimensionality a linear organization of the directory is more
efficient. The reason is that due to the high overlap, most of
the directory if not the whole directory has to be searched
anyway. If the whole directory has to be searched, a linearly
organized directory needs less space’ and may be read much
faster from disk than a block-wise reading of the directory.
For medium dimensionality, an efficient organization of the
directory would probably be partially hierarchical and
partially linear. The problem is to dynamically organize the
tree such that portions of the data which would produce
high overlap are organized linearly and those which can be
organized hierarchically without too much overlap are
dynamically organized in a hierarchical form. The
algorithms used in the X-tree are designed to automatically
organize the directory as hierarchical as possible, resulting
in a very efficient hybrid organization of the directory.
The research challenge which has led to the design of the
GC-tree is to combine the capability of the vector
approximation approach that accesses only a small fraction
of real vectors with the advantage of the multidimensional
index structure that prunes most of the search space and
constructs the index dynamically. In order to achieve this
goal, we partition the data space based on the analysis of the
dataset and construct the hierarchical index that reflects the
space partition hierarchy.

B. GRID CELL TREE METHOD

The GC-tree employs a density-based approach to partition
the data space and to determine the number of bits to
represent a cell vector for a partition. To approximate the
density of the data points, the GC-tree partitions the data

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2009

space into non-overlapping hyper-square cells and find the
points that lie inside each cell of the partition.

This is accomplished by partitioning every dimension into
the same number of equal length intervals at a time. This
means that every cell generated from the partition of a space
has the same volume, and therefore the number of points
inside a cell can be used to approximate the density of the
cell [4].

In a static database, the density of a cell can be defined as
the fraction of data points in the cell to the total data points.
However, for a dynamic database environment, and
especially, in the case of constructing a database from
scratch, it is difficult to estimate the density threshold that
identifies the dense and sparse cells because the density is
relatively determined with respect to the total data points.
Therefore, in the GC-tree, we define the density of a cell to
be the proportion of data points in the cell to disk page
capacity when we divide a space into 2d cells by binary
partitioning. A (sub)space in the data space corresponds to a
node in the GC-tree and is physically mapped to a single
disk page. There is a number P that identifies the maximum
number of objects that can be accommodated in a disk page.
That is, P represents the page capacity or the fanout of a
page. When the number of objects inserted into a page
exceeds P, the page is generally split into two. We call a
cell c dense if the density of c is greater than or equal to a
certain density threshold. Otherwise, it is called sparse.
We call a dense cell a cluster and call the points that lie
inside sparse cells outliers. If we determine the density
threshold to be larger than a half of the page capacity, at
most one cluster can be generated when we partition a space
due to the insertion of an object.

The basic idea of the density-based partitioning is (1) to
identify clusters and outliers when we partition a space, (2)
to focus the partitioning on the subspaces of the clusters
found because the subspaces covered by the outliers are
unlikely to be pruned in the search, and (3) to deal together
with all outliers found in the partitioning of a certain space.

It is difficult to bind the outliers within a small region since
they are widely spread over the whole subspace. Thus it is
very difficult to prune the outliers collectively during the
search because the large k-NNsphere is likely to intersect the
large bounding region in which the outliers lie. Therefore,
we collect in a single node of the GC-tree all outliers
generated from a single subspace partition, and concentrate
the partitioning on the clusters to reduce the possibility that
clusters are intersected by the search sphere k-NNsphere. If
the number of outliers generated from the partition exceeds
the page capacity, the GC-tree allocates more pages for the
outliers and simply links them. It makes multiple pages a
single virtual page. This is based on the observation that the
volume covered by the outliers is so large that it may not be
pruned in the search.

It is well known that for low-dimensional indexes it is
beneficial to partition the data space as balanced as
possible. However, in high-dimensional spaces, the
balanced partitioning results in large bounding rectangles
for the partitions. When we apply balanced partitioning on a
uniformly distributed dataset, the data space cannot be split
in each dimension. For example, in a 256-dimensoinal data

space, a split in each dimension results in a 2256 partitions
(or disk pages). Therefore, the data space is usually split
once in a number d of dimensions. In the remaining (d - d)
dimensions it has not been split and the bounding rectangles
include almost the whole data space in these dimensions.
Even for the non-uniformly distributed (e.g., clustered)
dataset, the bounding rectangles are likely to be large
because they still try to accommodate outliers and the
outliers usually lie far apart. On the contrary, the GC-tree
excludes the outliers in forming the bounding regions to
reduce the size of the bounding regions.

C. INDEX SELECTION IN RELATIONAL-
DATABASES
A problem of considerable interest in the physical design of
databases is the selection of a good set of indices. Indices
can be considered as auxiliary files that allow to retrieve
tuples satisfying certain selection predicates without having
to examine the whole relation. On the other hand, updating
the database causes an index to be updated to remain
consistent with the new database state. So, an index speeds
up retrieval and slows down maintenance. In general two
types of indices can be distinguished: primary and
secondary indices. In the case of a primary index, the tuples
in the relation are ordered on the indexed attribute. This is
not the case for a secondary index [4].
 PRIMARY AND SECONDARY INDICES
This section is devoted to the relation between a primary
index and secondary indices. Indices are supposed to be
organized often as B+-trees. Each node in the tree coincides
with a page. The leaf level consists of {key, TID-list} pairs
for every unique value of the indexed attribute(s). Figure
2.2(a) represents a primary index on the column name of a
relation RP name, age, residence, blood group) and figure
2.2(b) a secondary index on the column blood group of R.
In general the processing of a query roughly consists of two
steps; first the number of tuples which satisfies possibly the
WHERE clause of a query is determined; then these tuples
are retrieved . Since a primary index may be considered as a
special kind of a secondary index the optimizer may treat a
primary index and secondary indices as same in processing
the first step. In the second step it may use the ordening
property of the primary index if at least both types of
indices may be used. The following example illustrates this.

Fig 2.2 (a) Represents a primary index on attribute name of

relation R.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2010

Fig 2.2 (b) Represents a secondary index on attribute blood

group of R.

 AUTOMATIC INDEX SELECTION
The ideas of having a database that can tune itself by
automatically creating new indexes as the queries arrive
have been proposed in[6].In[6] a cost model is used to
identify beneficial indexes and decide when to create or
drop an index at runtime. Costa and Lifschitz propose an
agent-based database architecture to deal with an automatic
index creation. Microsoft Research has proposed a physical-
design alerter to identify when a modification to the
physical design could result in improved performance.
 ASSOCIATION RULE MINING
A main idea of association mining technique is to search a
relationship of attributes and tuples, by discovering
frequently occurring item sets in database. A result is
patterns described as rules that represent one-way
relationship. Furthermore, result rules consist of a
confidential value and support value, a value of which is
used to identify the pattern. The support is a number of
instances that complies with the rules, whereas the
confidential is a percentage of instances that must likewise
be complied by rules. In basket analysis, for example, the
association mining is a customer’s behaviour analysis that
determines the products the customer frequently buy
together.
Association rule mining, one of the most important and well
researched techniques of data mining, was first introduced
in [1]. It aims to extract interesting correlations, frequent
patterns, associations or casual structures among sets of
items in the transaction databases or other data repositories.
Association rules are widely used in various areas such as
telecommunication networks, market and risk management,
inventory control etc.
Association rule mining is to find out association rules that
satisfy the predefined minimum support and confidence
from a given database. The problem is usually decomposed
into two sub problems. One is to find those item sets whose
occurrences exceed a predefined threshold in the database;
those item sets are called frequent or large item sets. The
second problem is to generate association rules from those
large item sets with the constraints of minimal confidence.
In many cases, the algorithms generate an extremely large
number of association rules, often in thousands or even
millions. Further, the association rules are sometimes very
large. It is nearly impossible for the end users to
comprehend or validate such large number of complex
association rules, thereby limiting the usefulness of the data
mining results. Several strategies have been proposed to

reduce the number of association rules, such as generating
only “interesting” rules, generating only “non redundant”
rules, or generating only those rules satisfying certain other
criteria such as coverage, leverage, lift or strength [1].
In general, a set of items (such as the antecedent or the
consequent of a rule) is called an item set. The number of
items in an item set is called the length of an item set. Item
sets of some length k are referred to as k-item sets.
Generally, an association rules mining algorithm contains
the following steps:• The set of candidate k-item sets is
generated by 1-extensions of the large (k -1)-item sets
generated in the previous iteration. Supports for the
candidate k-item sets are generated by a pass over the
database.• Item sets that do not have the minimum support
are discarded and the remaining item sets are called large k-
item sets. This process is repeated until no more large item
sets are found.

IV. PROPOSED SYSTEM
Instead of using the query optimizer to estimate the query
cost, we conservatively estimate the number of matches
associated with using a given index by using a
multidimensional histogram abstract representation of the
data set. The histogram captures data correlations between
only those attributes that could be represented in a selected
index. The cost associated with an index is calculated based
on the number of estimated matches derived from the
histogram and the dimensionality of the index. Increasing
the size of the multidimensional histogram enhances the
accuracy of the estimate at the cost of an abstract
representation size.
 While maintaining the original query information for later
use to determine the estimated query cost, we apply one
abstraction to the query workload to convert each query into
the set of attributes referenced in the query. We perform
frequent item set mining over this abstraction and only
consider those sets of attributes that meet a certain support
to be potential indexes. By varying the support, we affect
the speed of index selection and the ratio of queries that are
covered by potential indexes. We further prune the analysis
space using association rule mining by eliminating those
subsets above a certain confidence threshold. Lowering the
confidence threshold improves the analysis time by
eliminating some lower dimensional indexes from
consideration but can result in recommending indexes that
cover a strict superset of the queried attributes.
Our technique differs from existing tools in the method that
we use to determine the potential set of indexes to evaluate
and in the quantization-based technique that we use to
estimate query costs. All of the commercial index wizards
work in design time. The DBA has to decide when to run
this wizard and over which workload. The assumption is
that the workload is going to remain static over time, and in
case it changes, the DBA would collect the new workload
and run the wizard again. The flexibility afforded by the
abstract representation that we use allows it to be used for
infrequent index selection considering a broader analysis
space or frequent online index selection.
USER MODULE
 Clients are end users of the systems. The user interface
resides in these client systems. This user interface enables
the clients to submit their item search. The user interface

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2011

also enables the users to Purchase the items from the seller.
A client is allowed to login from the client system. Only
authenticated clients are allowed to login. Password and
username is used to authenticate the client (user).
ALGORITHM
1. Start the system.2. Open the UI to the system.3. If new
user then submit request for creating a new user account.
4. If registered user, then provide login ID, password and
select category as user to log in. If error displays the error
message and go back to login prompt.5. Display list of
items provided by the company.6. Accept the no of items
requested
7. Create bill with tax 8. If purchase is completed by the
user then provide options for a. To go back and purchase
the items. b. To go back the main page. 9. End
 INDEX SELECTION MODULE
We identify three major components in the index selection
framework:
 The initialization of the abstract
representations.
 The query cost computation, and
 The index selection loop.
In the following sections, we describe these components
and the data flow between them.

Fig 5.3 Index Selection Flow chart and its components.

 INITIALIZE THE ABSTRACT RESENTATION

 In this module we are monitoring the user queries and
initialize the abstract representation. In this module we
collection the user transaction and from that we are finding
the frequently selected item. And by applying the association
rule we are calculation the relationship between the records
and finding the support and confidence. Based on that we
are initializing the abstract representation. The initialization
step uses a query workload and the data set to produce a set
of Potential Indexes P, a Query Set Q, and a
Multidimensional Histogram H according to the support,
confidence, and histogram size specified by the user. The
description of the outputs and how they are generated are
given as follows:
Potential index set p: This is a collection of attribute
sets that could be beneficial as an index for the queries in
the input query workload. This set is computed using
traditional data mining techniques. Considering the
attributes involved in each query for the input query
workload to be a single transaction, P consists of the sets of
attributes that occur together in a query at a ratio greater
than the input support. Formally, the support of a set of
attributes A is defined as

Where Qi is the set of attributes in the ith query, and n is the
number of queries.
For instance, if the input support is 10 percent and attributes
1 and 2 are queried together in greater than 10 percent of
the queries, then a representation of the set of attributes {1,
2} will be included as a potential index. Note that because a
subset of an attribute set that meets the support requirement
will also necessarily meet the support, all subsets of
attribute sets meeting the support will also be included as
potential indexes (in the example above, both sets {1} and
{2} will be included). As the input support is decreased, the
number of potential indexes increases. Note that our
particular system is built independently of a query optimizer,
but the sets of attributes appearing in the predicates from a
query optimizer log could just as easily be substituted for
the query workload in this step. If a set occurs nearly as
often as one of its subsets, an index built over the subset
will likely not provide much benefit over the query
workload if an index is built over the attributes in the set.
Such an index will only be more effective in pruning data
space for those queries that involve only the subset’s
attributes. In order to enhance analysis speed with limited
effect on accuracy, the input confidence is used to prune the
analysis space. Confidence is the ratio of a set’s occurrence
to the occurrence of a subset.
 While data mining the frequent attribute sets in the query
workload in determining P, we also maintain the association
rules for disjoint subsets and compute the confidence of
these association rules. The confidence of an association
rule is defined as the ratio that the antecedent (left-hand side
of the rule) and consequent (right-hand side of the rule)
appear together in a query, given that the antecedent
appears in the query. Formally, the confidence of an
association rule {set of attributes A} - {set of attributes
B}, where A and B are disjoint, is defined as

In our example, if every time attribute 1 appears, attribute 2
also appears, then the confidence of {1}{2}= 1.0. If
attribute 2 appears without attribute 1 as many times as it
appears with attribute 1, then the confidence {2}{1}= 0.5.
If we have set the confidence input to 0.6, then we will
prune the attribute set {1} from P, but we will keep attribute
set {2}.
We can also set the confidence level based on the attribute
set cardinality. Since the cost of including extra attributes
that are not useful for pruning increases with increased
indexed dimensionality, we want to be more conservative
with respect to pruning attribute subsets. The confidence
could take on a value that is dependent on the set cardinality.
Although the A priori algorithm was appropriate for the

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2012

relatively low attribute query sets in our domain, a more
efficient algorithm such as the FP-Tree could be applied if
the attribute sets associated with queries are too large for
the A priori technique to be efficient. Although it is
desirable to avoid examining a high-dimensional index set
as a potential index, another possible solution in the case
where a large number of attributes are frequent together
would be to partition a large closed frequent item set into
disjoint subsets for further examination. Techniques such as
CLOSET could be used to arrive at the initial closed
frequent item sets.
Query set Q: This is the abstract representation of the
query workload. It is initialized by associating the potential
indexes that could be beneficial for each query with that
query. These are the indexes in the potential index set P that
share at least one common attribute with the query. At the
end of this step, each query has an identified set of possible
indexes for that query.
MULTIDIMENSIONAL HISTOGRAM H: An
abstract representation of the data set is created in order to
estimate the query cost associated with using each query’s
possible indexes to answer that query. This representation is
in the form of a multidimensional histogram H. A single
bucket represents a unique bit representation across all the
attributes represented in the histogram. The input histogram
size dictates the number of bits used to represent each
unique bucket in the histogram. These bits are designated to
represent only the single attributes that met the input
support in the input query workload. If a single attribute
does not meet the support, then it cannot be part of an
attribute set appearing in P. There is no reason to sacrifice
data representation resolution for attributes that will not be
evaluated. The number of bits that each of the represented
attributes gets is proportional to the log of that attribute’s
support. This gives more resolution to those attributes that
occur more frequently in the query workload.
Data for an attribute that has been assigned b bits is divided
into 2b buckets. In order to handle data sets with uneven
data distribution, we define the ranges of each bucket so
that each bucket contains roughly the same number of
points. The histogram is built by converting each record in
the data etc to its representation in bucket numbers. As we
process data rows, we only aggregate the count of rows with
each unique bucket representation, because we are just
interested in estimating the query cost. Note that the
multidimensional histogram is based on a scalar quantize
designed on data and access patterns, as opposed to just data
in the traditional case. A higher accuracy in representation
is achieved by using more bits to quantize the attributes that
are more frequently queried.

Table 5.1 Histogram Example

For illustration, Table 5.1 shows a simple multidimensional
histogram example. This histogram covers three attributes
and uses 1 bit to quantize attributes 2 and 3, and 2 bits to
quantize attribute 1, assuming that it is queried more
frequently than the other attributes. In this example, for
attributes 2 and 3, values from 1 to 5 quantize to 0, and
values from 6 to 10 quantize to 1. For attribute 1, values 1
and 2 quantize to 00, 3 and 4 quantize to 01, 5, 6, and
7quantize to 10, and 8 and 9 quantize to 11. The .’s in the
column “Value” denote attribute boundaries (that is,
attribute 1 has 2 bits assigned to it).
Note that we do not maintain any entries in the histogram
for bit representations that have no occurrences. Thus, we
cannot have more histogram entries than records and will
not suffer from exponentially increasing the number of
potential multidimensional histogram buckets for high-
dimensional histograms.

 CALCULATE THE QUERY COST
 The query cost will be calculated based on the
potential index and Query Set. The query will be used to
find the best index. We say the index is best one if it gives
result for all the queries. Once generated, the abstract
representations of the query set Q and the multidimensional
histogram H are used to estimate the cost of answering each
query by using all possible indexes for the query. For a
given query-index pair, we aggregate the number of
matches that we find in the multidimensional histogram by
looking only at the attributes in the query that also occur in
the index (bits associated with other attributes are
considered to be don’t cares in the query matching logic).
To estimate the query cost, we then apply a cost function
based on the number of matches that we obtain by using the
index and the dimensionality of the index. At the end of this
step, our abstract query set representation has estimated
costs for each index that could improve the query cost. For
each query in the query set representation, we also keep a
current cost field, which we initialize to the cost of
performing the query by using sequential scan. At this point,
we also initialize an empty set of suggested indexes S.
Cost function: This is used to estimate the cost associated
with using a certain index for a query. The cost function can
be varied to accurately reflect a cost model for the database
system. For example, one could apply a cost function that
amortized the cost of loading an index over a certain
number of queries or use a function tailored to the type of
index that is used. Many cost functions have been proposed
over the years. R-Tree, which is the index type used for this
work.
Although these published cost estimates can be effective to
estimate the number of page accesses associated with using
a multidimensional index structure under certain conditions,
they have certain characteristics that make them less than
ideal for the given situation. Each of the cost estimates
formulas require a range radius. Therefore, the formulas
break down when assessing the cost of a query that is an
exact match query in one or more of the query dimensions.
These cost estimates also assume that data distribution is
independent between attributes and that the data is
uniformly distributed throughout the data space.
In order to overcome these limitations, we apply a cost
estimate that is based on the actual matches that occur over

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2013

the multidimensional histogram over the attributes that form
a potential index. The cost model for R-trees that we use in
this work is given by

Where d is the dimensionality of the index, and m is the
number of matches returned for query matching attributes in
the multidimensional histogram. Using actual matches
eliminates the need for a range radius. It also ties the cost
estimate to the actual data characteristics (that is,
incorporates both data correlation between attributes and
data distribution, whereas the published models will
produce results that are dependent only on the range radius
for a given index structure). The cost estimate provided is
conservative in that it will provide a result that is at least as
great as the actual number of matches in the database. By
evaluating the number of matches over the set of attributes
that match the query, the multidimensional subspace
pruning that can be achieved using different index
possibilities is taken into account. There is an additional
cost associated with higher dimensionality indexes due to
the greater number of overlaps of the hyperspaces within
the index structure and additional cost f traversing the
higher dimensional structure. A penalty is imposed on a
potential index by the dimensionality term. Given equal
ability to prune the space, a lower dimensional index will
translate into a lower cost. The cost function could be more
complicated in order to more accurately model query costs.
It could model query cost with greater accuracy, for
example, by crediting complete attribute coverage for
coverage queries. It could also reflect the appropriate index
structures used in the database system such as B+-trees. We
used this particular cost model, because the index type was
appropriate for our data and query sets.

 INDEX SELECTION LOOP
After initializing the index selection data structures and
updating estimated query costs for each potentially useful
index for a query, we use a greedy algorithm that takes into
account the indexes that were already selected to iteratively
select indexes that would be appropriate for the given query
workload and data set. For each index in the potential index
set P, we traverse the queries in query set Q that could be
improved by that index and accumulate the improvement
associated with using that index for that query. The
improvement for a given query-index pair is the difference
between the cost for using the index and the query’s current
cost. If the index does not provide any positive benefit for
the query, no improvement is accumulated. The potential
index i that yields the highest improvement over the query
set Q is considered to be the best index. Index i is removed
from the potential index set P and is added to the suggested
index set S. For the queries that benefit from i, the current
query cost is replaced by the improved cost.
 After each i is selected, a check is made to determine if the
index selection loop should continue. The input indexing
constraints provides one of the loop stop criteria. The
indexing constraint could be any constraint such as the
number of indexes, total index size, or the total number of
dimensions indexed. If no potential index yields further
improvement or the indexing constraints have been met,

then the loop exits. The set of suggested indexes S contains
the results of the index selection algorithm.
 At the end of loop iteration, when possible, we prune the
complexity of the abstract representations in order to make
the analysis more efficient. This includes actions such as
eliminating potential indexes that do not provide better cost
estimates than the current cost for any query and pruning
from consideration those queries whose best index is
already a member of the set of suggested indexes. The
overall speed of this algorithm is coupled with the number
of potential indexes analyzed, so the analysis time can be
reduced by increasing the support or decreasing the
confidence.
Different strategies can be used in selecting the best index.
The strategy provided assumes an indexing constraint based
on the number of indexes and therefore uses the total
benefit derived from the index as the measure of index
“goodness.” If the indexing constraint is based on the total
index size, then the benefit per index size unit may be a
more appropriate measure. However, this may result in
recommending a lower dimensional index and, later in the
algorithm, a higher dimensional index that always performs
better. The recommendation set can be pruned in order to
avoid recommending an index that is non useful in the
context of the complete solution.

 CALCULATE THE PERFORMANCE
For each response of the query we are calculating the
Performance. Based on that performance the index
modification will be performed.

ADMIN MODULE
Administrator is a part of the organization, so he should be
allowed to see the sales of the items and administrator can
also be a database administrator so he can see the details
like support and confidence for different combinations of
items that the end users of the system have purchased,
which reflects the frequent pattern for our index
calculations. The user interface provided is same as an end
user but while logging in he has to specify as ‘Admin’ in
category field of the Login panel. This user interface
enables the Admin to submit their item search. Only
authenticated users are allowed to login. Password and
username is used to authenticate the user (Admin).
Algorithm:
1. Start the system
2. Open the UI to the system
3. If new user then submit request for creating a new user
account.
4. If registered user, then provide login ID, password and
select category as Admin to log in. If error display the
error message and go back to login prompt.
5. Display list of items provided by the company and its
sales.
6. Display list of different combinations of items with their
support and confidence which shows the frequent items
sales.
7. Display Indexes for Data retrieval.
8. If all pages are over then provide options for
 a. To go back and see details again.
 b. To go back to main page.
9. End.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2014

V. IMPLEMENTATION
The J2EE platform is used for implementation. It uses a
multi-tiered distributed application model. Application
logic is divided into components according to function,
and the various application components that make up a
J2EE application are installed on different machines
depending on the tier in the multi-tiered J2EE
environment to which the application component belongs.
Figure 6.1 shows two multi-tiered J2EE applications
divided into the tiers described in the following list. The
J2EE application parts shown in Figure 6.1 are presented
in J2EE Components.

Figure 6.1 Multi-tiered Applications

 Client-tier components run on the client machine.
 Web-tier components run on the J2EE server.
 Business-tier components run on the J2EE server.

Enterprise information system (EIS)-tier software runs
on the EIS server. Although a J2EE application can
consist of the three or four tiers shown in Figure 6.1,
J2EE multi-tiered applications are generally considered
to be three-tiered applications because they are
distributed over three different locations: client machines,
the J2EE server machine, and the database or legacy
machines at the back end. Three-tiered applications that
run in this way extend the standard two-tiered client and
server model by placing a multithreaded application
server between the client application and back-end
storage.

J2EE COMPONENTS

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files and that communicates with other
components. The J2EE specification defines the
following J2EE components: Application clients and
applets are components that run on the client. Java

Servlet and Java Server Pages (JSP) technology
components are Web components that run on the server.

Enterprise JavaBeans (EJB) components (enterprise
beans) are business components that run on the server.J2EE

components are written in the Java programming language
and are compiled in the same way as any program in the
language.

The difference between J2EE components and "standard"
Java classes is that J2EE components are assembled into
a J2EE application, verified to be well formed and in
compliance with the J2EE specification, and deployed to
production, where they are run and managed by the J2EE
server.

BUSINESS COMPONENTS

Business code, which is logic that solves or meets the
needs of a particular business domain such as banking,
retail, or finance, is handled by enterprise beans running
in the business tier. Figure 6.3 shows how an enterprise
bean receives data from client programs, processes it (if
necessary), and sends it to the enterprise information
system tier for storage. An enterprise bean also retrieves
data from storage, processes it (if necessary), and sends it
back to the client program.

Figure 6.3 Business and EIS Tiers

There are three kinds of enterprise beans: session beans,
entity beans, and message-driven beans. A session bean
represents a transient conversation with a client. When
the client finishes executing, the session bean and its data
are gone. In contrast, an entity bean represents persistent
data stored in one row of a database table. If the client
terminates or if the server shuts down, the underlying
services ensure that the entity bean data is saved. A
message-driven bean combines features of a session bean
and a Java Message Service ("JMS") message listener,
allowing a business component to receive JMS messages
asynchronously. This tutorial describes entity beans and
session beans.

 MAJOR ACTIVITIES BY ALL MODULES

Following are the major activities implemented
in the all modules of the project implemented.

 MAJOR USER PROGRAM ACTIVITIES are Initialize
components , Validate user ,Encode instruction
commands , Encode data , Transmit instruction command
and data , Create new user ,Change password , Display
items options panel , Calculate bill ,Allow the user to

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2015

purchase , Acknowledge and exit. There are several sub
activities in each of the above activities, for example
validate user does the following activities. Display login
panel, Verify client side validation, Verify user name
field and password file for not empty , Send user name to
the server, Get password from the server , Decode the
password , Verify the password is correct or not. Major
Admin Program Activities : It remains same
technically that is the user interface provided is same as
an end user but while logging in he has to specify as
‘Admin’ in category field of the Login panel. This user
interface enables the Admin to submit their item search.
Only authenticated users are allowed to login. Password
and username is used to authenticate the user (Admin).It
displays the item wise sales details, frequent item sets,
support and confidence for different combinations of
items (Index).
Major Index selection Program Activities: After
every 5 transactions create index , Before creating index
find frequent item set, Calculate support and confidence
for different combination of items, When a new query
arrives try to find index with less query cost , Display
that as the answer for the search, Otherwise display
nothing.

VI. SCREEN SHOTS

Screen Shot 1 showing the Starting Screen the System with
Login Panel and Search box.

Screen shot 2 showing the new member Login Registration
forms for User and Admin.

Screen shot 3 showing the ‘With Index’ method of Index
recommendations.

Screen shot 4 showing the ‘With Index’ method of
recommendations when there is no recommended index.

Screen shot 5 showing the without index method.

Screen shot 6 showing the Admin Login panel.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2016

Screen shot 7 showing the List of items for Purchase and
command to purchase.

Screen shot 8 showing the List of items Purchased and total
Bill.

Screen shot 9 Acknowledging the User Purchase.

The description of the various forms (snap shots)of the
project implemented is as follows: Screen Shot 1 shows
Main menu of the system with Login Panel and Search box.
Screen shot 2 shows the new member Login Registration
forms for User and Admin. Screen shot 3 shows the ‘With
Index’ method of Index recommendations. Screen shot 4
shows the ‘With Index’ method of recommendations when
there is no recommended index. Screen shot 5 shows the
without index method. Screen shot 6 shows the Admin
Login panel. Screen shot 7 shows the List of items for
Purchase and command to purchase. Screen shot 8 shows
the List of items Purchased and total Bill. Screen shot 9
shows form acknowledging the User Purchase.

VII. RESULTS AND DISCUSSIONS
We have used J2EE to implement Effective Indexing
method for High dimensional Databases .The Index
recommendations are done by using frequent item set
mining. Test results show that whenever a query pattern
change, this intern changes the frequent item set then the
support and confidence values and change in item set
change the recommended indexes and this makes the
system more attractive. However extra bit of time is needed
to these activities such as calculating frequent item set,
confidence, support and query cost. Therefore the index
recommendations based on frequent item set mining is
appropriate for the product purchasing sites. If want to get
a particular item in the system then better to choose the
without index method available for search .In our model we
have used a new data mining technique which is visible to
users. The foundation provided here will be used to explore
this trade-off and to develop an improved utility for real-
world applications. The proposed technique affords the
opportunity to adjust indexes to new query patterns. A
limitation of the proposed approach is that if index set
changes are not responsive enough to query pattern changes,
then the control feedback may not affect positive system
changes.

VIII. CONCLUSION AND SCOPE FOR FUTURE

WORK
A flexible technique for index selection is introduced,
which can be tuned to achieve different levels of constraints
and analysis complexity. A low-constraint more complex
analysis can lead to more accurate index selection over
stable query patterns. A more constrained less complex
analysis is more appropriate to adapt index selection to
account for evolving query patterns. The technique uses a
generated multidimensional histogram to estimate cost and,
as a result, is not coupled to the idiosyncrasies of a query
optimizer, which may not be able to take advantage of
knowledge about correlations between attributes. Indexes
are recommended in order to take advantage of
multidimensional subspace pruning when it is beneficial to
do so.
The proposed technique affords the opportunity to adjust
indexes to new query patterns. A limitation of the proposed
approach is that if index set changes are not responsive
enough to query pattern changes, then the control feedback
may not affect positive system changes. However, this can
be addressed by adjusting control sensitivity or by changing
control sensitivity over time as more knowledge is gathered
about the query patterns.
Index creation is quite time consuming. It is not feasible to
perform real-time analysis of incoming queries and generate
new indexes when the patterns change. Potential indexes
could be generated prior to receiving new queries and, when
indicated by the analysis, moved to the active status. This
could mean moving an index from the local storage to the
main memory or from a remote storage to the local storage,
depending on the size of the index.
Future Enhancement:
 Future work is to reduce the no of computation while
computing the index.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2017

REFERENCES
[1] “Data mining”, Arun K.pujari ,
[2] “The X-Tree: An Index Structure for High-Dimensional Data,” S.
Berchtold, D. Keim, and H. Kriegel , Proc. 22nd Int’l Conf. Very Large
Data Bases (VLDB ’96), pp. 28-39, 1996.
[3] “The GC-Tree: A High-Dimensional Index Structure for Similarity
Search in Image Databases,” C.-W. Chung and G.-H. Cha, IEEE
Trans. Multimedia, vol. 4, no. 2, pp. 235-247, June 2002.
[4] “Index Selection in Relational Databases,” K. Whang, Proc. Second
Int’l Conf. Foundations on Data Organization (FODO ’85), 1985.
 [5] “Mining Frequent Patterns without Candidate Generation”, J. Han, J.
Pei, and Y. Yin, Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’00), W. Chen, J. Naughton and P.A. Bernstein, eds., pp. 1-12,
2000.
[6] “online index recommendations for high dimensional data bases using
Query work load”, Michael Gibas, Guadalupe Canahuate, and Hakan
Ferhatosmanoglu, IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008
[7] An efficient high-dimensional indexing method for content-based
retrieval in large image databases I. Daoudi a,c, , K.Idrissi a, S.E.Ouatik b,
A.Baskurt a, D.Aboutajdine c, Article history: Received29September2008
Received in revised form 28 August2009 Accepted4September2009.
[8] “Application of Web usage mining and product taxonomy to
collaborative recommendations in e-commerce” , Yoon Ho Choa, Jae
Kyeong Kimb,* ,Elsever publication .
[9] “hybrid data mining technique for knowledge discovery from
engineering materials data sets “, Doreswamy, Hemanth K S , International
Journal of Database Management Systems (IJDMS), Vol.3, No.1,
February 2011.
[10] S. Kai-Uwe, E. Schallehn, and I. Geist, “Autonomous query-driven
index tuning,” in International Database Engineering & Applications
Symposium, Coimbra, Portugal, 2004.
[11] R. L. D. C. Costa and S. Lifschitz, “Index self-tuning with agentbased
databases,” in XXVIII Latin-American Conference on Informatics (CLIE),
Montevideo, Uruguay, 2002.
[12] N. Bruno and S. Chaudhuri, “To tune or not to tune? a lightweight
physical design alerter.” in VLDB, 2006, pp. 499–510.
[13] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in 2000 ACM SIGMOD Intl. Conference on
Management of Data, W. Chen, J. Naughton, and P. A.Bernstein, Eds.
ACM Press, 05 2000, pp. 1–12. [Online].
Available:citeseer.ist.psu.edu/han99mining.html
[14] J. Pei, J. Han, and R. Mao, “CLOSET: An efficient algorithm for
mining frequent closed itemsets,” in ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, 2000, pp.21–
30. [Online]. Available: citeseer.ist.psu.edu/pei00closet.html
[15] C. Faloutsos, T. Sellis, and N. Roussopoulos, “Analysis of object
oriented spatial access methods,” in SIGMOD ’87: Proceedings of the
1987 ACM SIGMOD international conference on Management of data.
New York, NY, USA: ACM Press, 1987, pp. 426–439.
[16] C. Bohm, “A cost model for query processing in high dimensional
data spaces,” ACM Trans. Database Syst., vol. 25, no. 2, pp. 129–178,
2000.

Manjunath K.G. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2008-2018

2018

